Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 42(12): 4101-4111, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32060865

RESUMO

The presence of heavy metal in soil and water resources has serious impact on human health. The study was designed to examine the phytoremediation ability of plant species that are growing naturally on the Zn-contaminated site. For the study, six plant species and their rhizospheric soil as well as non-rhizospheric soil samples were collected from different parts of the industrial sites for chemical and biological characterization. Visual observations and highest importance value index (IVI) through biodiversity study revealed potential plants as effective ecological tools for the restoration of the contaminated site. Among the plants, almost all were the most efficient in accumulating Fe, Mn, Cu and Zn in its shoots and roots, while Cynodon dactylon, Chloris virgata and Desmostachya bipinnata were found to be stabilizing Cr, Pb and Cd (bioconcentration factor in root = 7.95, 6.28 and 1.98 as well as translocation factor = 0.48, 0.46 and 0.78), respectively. Thus, the results of this study showed that the naturally growing plant species have phytoremediation potential to remediate the electroplating wastewater-contaminated site. These plant species are successful phytoremediators with their efficient metal stabilizing and well-evolved tolerance to heavy metal toxicity.


Assuntos
Galvanoplastia , Metais Pesados/metabolismo , Plantas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Biodiversidade , Metais Pesados/análise , Raízes de Plantas/classificação , Raízes de Plantas/metabolismo , Plantas/classificação , Rizosfera , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/análise
2.
Environ Geochem Health ; 42(8): 2399-2411, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31587160

RESUMO

Soil contamination by heavy metals and metalloids is a serious problem which needs to be addressed. There are several methods for removal of contaminants, but they are costly, while the method of phytoremediation is eco-friendly and cost-effective. Pteridophytes have been found to remediate heavy metal-contaminated soil. Pteridophytes are non-flowering plant that reproduces by spores. Pteris vittata has been reported as the first fern plant to hyperaccumulate arsenic. The Pteris species belongs to the order Pteridales. Other ferns that are known phytoremediators are, for example, Nephrolepis cordifolia and Hypolepis muelleri (identified as phytostabilisers of Cu, Pb, Zn and Ni); similarly Pteris umbrosa and Pteris cretica accumulate arsenic in leaves. So, pteridophytes have a number of species that accumulate contaminants. Many of them have been identified, while various other are being explored. The present review article describes the phytoremediation potential of pteridophytes plants and suggests as a potential asset for phytoremediation programs.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gleiquênias/fisiologia , Poluentes do Solo/farmacocinética , Arsênio/farmacocinética , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Gleiquênias/efeitos dos fármacos , Herbivoria , Metais Pesados/farmacocinética , Pteris/efeitos dos fármacos , Pteris/fisiologia , Poluentes do Solo/análise
3.
Ecotoxicol Environ Saf ; 182: 109462, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31351329

RESUMO

Wheat (W) and accumulators (A) were planted in plots (arsenic amended soil and without arsenic) designed with ecotoxicological concern for arsenic safe-grains. For the study sixteen plots of 2 × 2 × 0.5 m (l × b × h) size were prepared. Arsenic (As) in the form of sodium arsenate was applied at 50 mg/kg in plots. Out of these sixteen plots eight plots had arsenic amended soil and rest 8 without any arsenic (C). Accumulator's viz. Pteris vittata (PV), Phragmites australis (PA) and Vetiveria zizanioides (VZ) were planted along with wheat in combination (W + PV, W + PA and W + VZ) in twelve plots (6 AWAs plots and 6 AWC plots). In the rest 4 plots (2 WAs plots and 2 WC plots), only wheat was planted. The study was conducted for two cropping seasons, where accumulators were left in the plots between the cropping seasons except that before 2nd cropping accumulators were properly pruned and extra tillers were removed. The germination % of wheat in WAs in 1st and the 2nd cropping season was found to be 55 and 57%, while in AWAs and AWC plots it was between 86 and 92% (W + VZ, 56 and 73%). The physiological activity was found to be reduced in WAs plots compared to AWAs (except for vetiver combination) and AWC plots in both cropping seasons. The antioxidant activity was enhanced in WAs compared with AWAs. The arsenic concentration in grains of wheat was within the permissible limit set by WHO and GOI in AWAs plots while it exceeded the limit in W + VZ (in 1st cropping) and WAs in both cropings.


Assuntos
Antioxidantes/metabolismo , Arseniatos/análise , Poaceae/química , Pteris/química , Poluentes do Solo/análise , Triticum/química , Biodegradação Ambiental , Vetiveria/química , Vetiveria/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Pteris/crescimento & desenvolvimento , Solo/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
4.
Chemosphere ; 184: 1327-1333, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28679153

RESUMO

An experiment was designed using phytoremadiation technology to obtain grains of rice safe for consumption. Sixteen plots of size 2 × 2 m were prepared (8 plots were treated with 50 mg kg-1 of sodium arsenate and rest 8 without any treatment). The study was done for two plantations (1st and 2nd plantation). Rice was planted with three accumulators (Phragmites australis, Vetiveria zizanioides and Pteris vitatta) in treated and untreated plot. Arsenic in grains of Actr (R + Pt, R + Ph and R + Vt) for 1st plantation was 0.4, 0.2 and 0.2 mg kg-1 where as in the case of wActr (Ras) it was 3 mg kg-1. In 2nd plantation the concentration of arsenic in grain of Actr (R + Pt, R + Ph and R + Vt) was 0.1, 0.1 and 0.1 mg kg-1 where as in the case of wActr (Ras) it was 2 mg kg-1. Significant differences in growth and yield parameters of rice between Actr and wActr in 1st plantation, while for 2nd plantation the activity was reduced in combinations except R + Pt and no significant difference was observed between Actr, Acntr and wActr. The study concluded that combinations of accumulators with crops could be useful for the survival and safe grains in As-contaminated soils but with some amendments in long-term remediation.


Assuntos
Arsênio/análise , Recuperação e Remediação Ambiental , Oryza/química , Poluentes do Solo/análise , Arseniatos , Produtos Agrícolas , Grão Comestível/química , Poluição Ambiental , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Pteris
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA